| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IBM Concert 1.0.0 through 2.1.0 for Z hub framework is vulnerable to cross-site scripting. This vulnerability allows an unauthenticated attacker to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. |
| A race condition vulnerability was found in the vmwgfx driver in the Linux kernel. The flaw exists within the handling of GEM objects. The issue results from improper locking when performing operations on an object. This flaw allows a local privileged user to disclose information in the context of the kernel. |
| A race condition was found in the GSM 0710 tty multiplexor in the Linux kernel. This issue occurs when two threads execute the GSMIOC_SETCONF ioctl on the same tty file descriptor with the gsm line discipline enabled, and can lead to a use-after-free problem on a struct gsm_dlci while restarting the gsm mux. This could allow a local unprivileged user to escalate their privileges on the system. |
| A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution. |
| A use-after-free vulnerability was found in drivers/nvme/target/tcp.c` in `nvmet_tcp_free_crypto` due to a logical bug in the NVMe/TCP subsystem in the Linux kernel. This issue may allow a malicious user to cause a use-after-free and double-free problem, which may permit remote code execution or lead to local privilege escalation. |
| A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate. |
| A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix early read unlock of page with EOF in middle
The read result collection for buffered reads seems to run ahead of the
completion of subrequests under some circumstances, as can be seen in the
following log snippet:
9p_client_res: client 18446612686390831168 response P9_TREAD tag 0 err 0
...
netfs_sreq: R=00001b55[1] DOWN TERM f=192 s=0 5fb2/5fb2 s=5 e=0
...
netfs_collect_folio: R=00001b55 ix=00004 r=4000-5000 t=4000/5fb2
netfs_folio: i=157f3 ix=00004-00004 read-done
netfs_folio: i=157f3 ix=00004-00004 read-unlock
netfs_collect_folio: R=00001b55 ix=00005 r=5000-5fb2 t=5000/5fb2
netfs_folio: i=157f3 ix=00005-00005 read-done
netfs_folio: i=157f3 ix=00005-00005 read-unlock
...
netfs_collect_stream: R=00001b55[0:] cto=5fb2 frn=ffffffff
netfs_collect_state: R=00001b55 col=5fb2 cln=6000 n=c
netfs_collect_stream: R=00001b55[0:] cto=5fb2 frn=ffffffff
netfs_collect_state: R=00001b55 col=5fb2 cln=6000 n=8
...
netfs_sreq: R=00001b55[2] ZERO SUBMT f=000 s=5fb2 0/4e s=0 e=0
netfs_sreq: R=00001b55[2] ZERO TERM f=102 s=5fb2 4e/4e s=5 e=0
The 'cto=5fb2' indicates the collected file pos we've collected results to
so far - but we still have 0x4e more bytes to go - so we shouldn't have
collected folio ix=00005 yet. The 'ZERO' subreq that clears the tail
happens after we unlock the folio, allowing the application to see the
uncleared tail through mmap.
The problem is that netfs_read_unlock_folios() will unlock a folio in which
the amount of read results collected hits EOF position - but the ZERO
subreq lies beyond that and so happens after.
Fix this by changing the end check to always be the end of the folio and
never the end of the file.
In the future, I should look at clearing to the end of the folio here rather
than adding a ZERO subreq to do this. On the other hand, the ZERO subreq can
run in parallel with an async READ subreq. Further, the ZERO subreq may still
be necessary to, say, handle extents in a ceph file that don't have any
backing store and are thus implicitly all zeros.
This can be reproduced by creating a file, the size of which doesn't align
to a page boundary, e.g. 24998 (0x5fb2) bytes and then doing something
like:
xfs_io -c "mmap -r 0 0x6000" -c "madvise -d 0 0x6000" \
-c "mread -v 0 0x6000" /xfstest.test/x
The last 0x4e bytes should all be 00, but if the tail hasn't been cleared
yet, you may see rubbish there. This can be reproduced with kafs by
modifying the kernel to disable the call to netfs_read_subreq_progress()
and to stop afs_issue_read() from doing the async call for NETFS_READAHEAD.
Reproduction can be made easier by inserting an mdelay(100) in
netfs_issue_read() for the ZERO-subreq case.
AFS and CIFS are normally unlikely to show this as they dispatch READ ops
asynchronously, which allows the ZERO-subreq to finish first. 9P's READ op is
completely synchronous, so the ZERO-subreq will always happen after. It isn't
seen all the time, though, because the collection may be done in a worker
thread. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdhci-of-dwcmshc: Prevent illegal clock reduction in HS200/HS400 mode
When operating in HS200 or HS400 timing modes, reducing the clock frequency
below 52MHz will lead to link broken as the Rockchip DWC MSHC controller
requires maintaining a minimum clock of 52MHz in these modes.
Add a check to prevent illegal clock reduction through debugfs:
root@debian:/# echo 50000000 > /sys/kernel/debug/mmc0/clock
root@debian:/# [ 30.090146] mmc0: running CQE recovery
mmc0: cqhci: Failed to halt
mmc0: cqhci: spurious TCN for tag 0
WARNING: drivers/mmc/host/cqhci-core.c:797 at cqhci_irq+0x254/0x818, CPU#1: kworker/1:0H/24
Modules linked in:
CPU: 1 UID: 0 PID: 24 Comm: kworker/1:0H Not tainted 6.19.0-rc1-00001-g09db0998649d-dirty #204 PREEMPT
Hardware name: Rockchip RK3588 EVB1 V10 Board (DT)
Workqueue: kblockd blk_mq_run_work_fn
pstate: 604000c9 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : cqhci_irq+0x254/0x818
lr : cqhci_irq+0x254/0x818
... |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/sva: invalidate stale IOTLB entries for kernel address space
Introduce a new IOMMU interface to flush IOTLB paging cache entries for
the CPU kernel address space. This interface is invoked from the x86
architecture code that manages combined user and kernel page tables,
specifically before any kernel page table page is freed and reused.
This addresses the main issue with vfree() which is a common occurrence
and can be triggered by unprivileged users. While this resolves the
primary problem, it doesn't address some extremely rare case related to
memory unplug of memory that was present as reserved memory at boot, which
cannot be triggered by unprivileged users. The discussion can be found at
the link below.
Enable SVA on x86 architecture since the IOMMU can now receive
notification to flush the paging cache before freeing the CPU kernel page
table pages. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/io-wq: check IO_WQ_BIT_EXIT inside work run loop
Currently this is checked before running the pending work. Normally this
is quite fine, as work items either end up blocking (which will create a
new worker for other items), or they complete fairly quickly. But syzbot
reports an issue where io-wq takes seemingly forever to exit, and with a
bit of debugging, this turns out to be because it queues a bunch of big
(2GB - 4096b) reads with a /dev/msr* file. Since this file type doesn't
support ->read_iter(), loop_rw_iter() ends up handling them. Each read
returns 16MB of data read, which takes 20 (!!) seconds. With a bunch of
these pending, processing the whole chain can take a long time. Easily
longer than the syzbot uninterruptible sleep timeout of 140 seconds.
This then triggers a complaint off the io-wq exit path:
INFO: task syz.4.135:6326 blocked for more than 143 seconds.
Not tainted syzkaller #0
Blocked by coredump.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz.4.135 state:D stack:26824 pid:6326 tgid:6324 ppid:5957 task_flags:0x400548 flags:0x00080000
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5256 [inline]
__schedule+0x1139/0x6150 kernel/sched/core.c:6863
__schedule_loop kernel/sched/core.c:6945 [inline]
schedule+0xe7/0x3a0 kernel/sched/core.c:6960
schedule_timeout+0x257/0x290 kernel/time/sleep_timeout.c:75
do_wait_for_common kernel/sched/completion.c:100 [inline]
__wait_for_common+0x2fc/0x4e0 kernel/sched/completion.c:121
io_wq_exit_workers io_uring/io-wq.c:1328 [inline]
io_wq_put_and_exit+0x271/0x8a0 io_uring/io-wq.c:1356
io_uring_clean_tctx+0x10d/0x190 io_uring/tctx.c:203
io_uring_cancel_generic+0x69c/0x9a0 io_uring/cancel.c:651
io_uring_files_cancel include/linux/io_uring.h:19 [inline]
do_exit+0x2ce/0x2bd0 kernel/exit.c:911
do_group_exit+0xd3/0x2a0 kernel/exit.c:1112
get_signal+0x2671/0x26d0 kernel/signal.c:3034
arch_do_signal_or_restart+0x8f/0x7e0 arch/x86/kernel/signal.c:337
__exit_to_user_mode_loop kernel/entry/common.c:41 [inline]
exit_to_user_mode_loop+0x8c/0x540 kernel/entry/common.c:75
__exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline]
syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline]
do_syscall_64+0x4ee/0xf80 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa02738f749
RSP: 002b:00007fa0281ae0e8 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca
RAX: fffffffffffffe00 RBX: 00007fa0275e6098 RCX: 00007fa02738f749
RDX: 0000000000000000 RSI: 0000000000000080 RDI: 00007fa0275e6098
RBP: 00007fa0275e6090 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fa0275e6128 R14: 00007fff14e4fcb0 R15: 00007fff14e4fd98
There's really nothing wrong here, outside of processing these reads
will take a LONG time. However, we can speed up the exit by checking the
IO_WQ_BIT_EXIT inside the io_worker_handle_work() loop, as syzbot will
exit the ring after queueing up all of these reads. Then once the first
item is processed, io-wq will simply cancel the rest. That should avoid
syzbot running into this complaint again. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: ptrace: Fix SVE writes on !SME systems
When SVE is supported but SME is not supported, a ptrace write to the
NT_ARM_SVE regset can place the tracee into an invalid state where
(non-streaming) SVE register data is stored in FP_STATE_SVE format but
TIF_SVE is clear. This can result in a later warning from
fpsimd_restore_current_state(), e.g.
WARNING: CPU: 0 PID: 7214 at arch/arm64/kernel/fpsimd.c:383 fpsimd_restore_current_state+0x50c/0x748
When this happens, fpsimd_restore_current_state() will set TIF_SVE,
placing the task into the correct state. This occurs before any other
check of TIF_SVE can possibly occur, as other checks of TIF_SVE only
happen while the FPSIMD/SVE/SME state is live. Thus, aside from the
warning, there is no functional issue.
This bug was introduced during rework to error handling in commit:
9f8bf718f2923 ("arm64/fpsimd: ptrace: Gracefully handle errors")
... where the setting of TIF_SVE was moved into a block which is only
executed when system_supports_sme() is true.
Fix this by removing the system_supports_sme() check. This ensures that
TIF_SVE is set for (SVE-formatted) writes to NT_ARM_SVE, at the cost of
unconditionally manipulating the tracee's saved svcr value. The
manipulation of svcr is benign and inexpensive, and we already do
similar elsewhere (e.g. during signal handling), so I don't think it's
worth guarding this with system_supports_sme() checks.
Aside from the above, there is no functional change. The 'type' argument
to sve_set_common() is only set to ARM64_VEC_SME (in ssve_set())) when
system_supports_sme(), so the ARM64_VEC_SME case in the switch statement
is still unreachable when !system_supports_sme(). When
CONFIG_ARM64_SME=n, the only caller of sve_set_common() is sve_set(),
and the compiler can constant-fold for the case where type is
ARM64_VEC_SVE, removing the logic for other cases. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: Fix not set tty->port race condition
Revert commit bfc467db60b7 ("serial: remove redundant
tty_port_link_device()") because the tty_port_link_device() is not
redundant: the tty->port has to be confured before we call
uart_configure_port(), otherwise user-space can open console without TTY
linked to the driver.
This tty_port_link_device() was added explicitly to avoid this exact
issue in commit fb2b90014d78 ("tty: link tty and port before configuring
it as console"), so offending commit basically reverted the fix saying
it is redundant without addressing the actual race condition presented
there.
Reproducible always as tty->port warning on Qualcomm SoC with most of
devices disabled, so with very fast boot, and one serial device being
the console:
printk: legacy console [ttyMSM0] enabled
printk: legacy console [ttyMSM0] enabled
printk: legacy bootconsole [qcom_geni0] disabled
printk: legacy bootconsole [qcom_geni0] disabled
------------[ cut here ]------------
tty_init_dev: ttyMSM driver does not set tty->port. This would crash the kernel. Fix the driver!
WARNING: drivers/tty/tty_io.c:1414 at tty_init_dev.part.0+0x228/0x25c, CPU#2: systemd/1
Modules linked in: socinfo tcsrcc_eliza gcc_eliza sm3_ce fuse ipv6
CPU: 2 UID: 0 PID: 1 Comm: systemd Tainted: G S 6.19.0-rc4-next-20260108-00024-g2202f4d30aa8 #73 PREEMPT
Tainted: [S]=CPU_OUT_OF_SPEC
Hardware name: Qualcomm Technologies, Inc. Eliza (DT)
...
tty_init_dev.part.0 (drivers/tty/tty_io.c:1414 (discriminator 11)) (P)
tty_open (arch/arm64/include/asm/atomic_ll_sc.h:95 (discriminator 3) drivers/tty/tty_io.c:2073 (discriminator 3) drivers/tty/tty_io.c:2120 (discriminator 3))
chrdev_open (fs/char_dev.c:411)
do_dentry_open (fs/open.c:962)
vfs_open (fs/open.c:1094)
do_open (fs/namei.c:4634)
path_openat (fs/namei.c:4793)
do_filp_open (fs/namei.c:4820)
do_sys_openat2 (fs/open.c:1391 (discriminator 3))
...
Starting Network Name Resolution...
Apparently the flow with this small Yocto-based ramdisk user-space is:
driver (qcom_geni_serial.c): user-space:
============================ ===========
qcom_geni_serial_probe()
uart_add_one_port()
serial_core_register_port()
serial_core_add_one_port()
uart_configure_port()
register_console()
|
| open console
| ...
| tty_init_dev()
| driver->ports[idx] is NULL
|
tty_port_register_device_attr_serdev()
tty_port_link_device() <- set driver->ports[idx] |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8m-blk-ctrl: Remove separate rst and clk mask for 8mq vpu
For i.MX8MQ platform, the ADB in the VPUMIX domain has no separate reset
and clock enable bits, but is ungated and reset together with the VPUs.
So we can't reset G1 or G2 separately, it may led to the system hang.
Remove rst_mask and clk_mask of imx8mq_vpu_blk_ctl_domain_data.
Let imx8mq_vpu_power_notifier() do really vpu reset. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: add missing ice_deinit_hw() in devlink reinit path
devlink-reload results in ice_init_hw failed error, and then removing
the ice driver causes a NULL pointer dereference.
[ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16
...
[ +0.000001] Call Trace:
[ +0.000003] <TASK>
[ +0.000006] ice_unload+0x8f/0x100 [ice]
[ +0.000081] ice_remove+0xba/0x300 [ice]
Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on
error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result
ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but
ice_devlink_reinit_up() still calls ice_init_hw(). Since the control
queues are not uninitialized, ice_init_hw() fails with -EBUSY.
Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with
ice_init_hw() in ice_devlink_reinit_up(). |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix kobject warnings for empty attribute names
The hp-bioscfg driver attempts to register kobjects with empty names when
the HP BIOS returns attributes with empty name strings. This causes
multiple kernel warnings:
kobject: (00000000135fb5e6): attempted to be registered with empty name!
WARNING: CPU: 14 PID: 3336 at lib/kobject.c:219 kobject_add_internal+0x2eb/0x310
Add validation in hp_init_bios_buffer_attribute() to check if the
attribute name is empty after parsing it from the WMI buffer. If empty,
log a debug message and skip registration of that attribute, allowing the
module to continue processing other valid attributes. |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix data-race warning and potential load/store tearing
Fix the following:
BUG: KCSAN: data-race in rxrpc_peer_keepalive_worker / rxrpc_send_data_packet
which is reporting an issue with the reads and writes to ->last_tx_at in:
conn->peer->last_tx_at = ktime_get_seconds();
and:
keepalive_at = peer->last_tx_at + RXRPC_KEEPALIVE_TIME;
The lockless accesses to these to values aren't actually a problem as the
read only needs an approximate time of last transmission for the purposes
of deciding whether or not the transmission of a keepalive packet is
warranted yet.
Also, as ->last_tx_at is a 64-bit value, tearing can occur on a 32-bit
arch.
Fix both of these by switching to an unsigned int for ->last_tx_at and only
storing the LSW of the time64_t. It can then be reconstructed at need
provided no more than 68 years has elapsed since the last transmission. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: provide a net pointer to __skb_flow_dissect()
After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect")
we have to provide a net pointer to __skb_flow_dissect(),
either via skb->dev, skb->sk, or a user provided pointer.
In the following case, syzbot was able to cook a bare skb.
WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053
Call Trace:
<TASK>
bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline]
__bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157
bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline]
bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline]
bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515
xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388
bpf_prog_run_xdp include/net/xdp.h:700 [inline]
bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421
bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390
bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703
__sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182
__do_sys_bpf kernel/bpf/syscall.c:6274 [inline]
__se_sys_bpf kernel/bpf/syscall.c:6272 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94 |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: avoid one data-race in l2tp_tunnel_del_work()
We should read sk->sk_socket only when dealing with kernel sockets.
syzbot reported the following data-race:
BUG: KCSAN: data-race in l2tp_tunnel_del_work / sk_common_release
write to 0xffff88811c182b20 of 8 bytes by task 5365 on cpu 0:
sk_set_socket include/net/sock.h:2092 [inline]
sock_orphan include/net/sock.h:2118 [inline]
sk_common_release+0xae/0x230 net/core/sock.c:4003
udp_lib_close+0x15/0x20 include/net/udp.h:325
inet_release+0xce/0xf0 net/ipv4/af_inet.c:437
__sock_release net/socket.c:662 [inline]
sock_close+0x6b/0x150 net/socket.c:1455
__fput+0x29b/0x650 fs/file_table.c:468
____fput+0x1c/0x30 fs/file_table.c:496
task_work_run+0x131/0x1a0 kernel/task_work.c:233
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
__exit_to_user_mode_loop kernel/entry/common.c:44 [inline]
exit_to_user_mode_loop+0x1fe/0x740 kernel/entry/common.c:75
__exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline]
syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline]
do_syscall_64+0x1e1/0x2b0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88811c182b20 of 8 bytes by task 827 on cpu 1:
l2tp_tunnel_del_work+0x2f/0x1a0 net/l2tp/l2tp_core.c:1418
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0x4ce/0x9d0 kernel/workqueue.c:3340
worker_thread+0x582/0x770 kernel/workqueue.c:3421
kthread+0x489/0x510 kernel/kthread.c:463
ret_from_fork+0x149/0x290 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
value changed: 0xffff88811b818000 -> 0x0000000000000000 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs-scheme: cleanup access_pattern subdirs on scheme dir setup failure
When a DAMOS-scheme DAMON sysfs directory setup fails after setup of
access_pattern/ directory, subdirectories of access_pattern/ directory are
not cleaned up. As a result, DAMON sysfs interface is nearly broken until
the system reboots, and the memory for the unremoved directory is leaked.
Cleanup the directories under such failures. |