| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IBM Concert 1.0.0 through 2.1.0 for Z hub framework is vulnerable to cross-site scripting. This vulnerability allows an unauthenticated attacker to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. |
| A race condition vulnerability was found in the vmwgfx driver in the Linux kernel. The flaw exists within the handling of GEM objects. The issue results from improper locking when performing operations on an object. This flaw allows a local privileged user to disclose information in the context of the kernel. |
| A race condition was found in the GSM 0710 tty multiplexor in the Linux kernel. This issue occurs when two threads execute the GSMIOC_SETCONF ioctl on the same tty file descriptor with the gsm line discipline enabled, and can lead to a use-after-free problem on a struct gsm_dlci while restarting the gsm mux. This could allow a local unprivileged user to escalate their privileges on the system. |
| A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution. |
| A use-after-free vulnerability was found in drivers/nvme/target/tcp.c` in `nvmet_tcp_free_crypto` due to a logical bug in the NVMe/TCP subsystem in the Linux kernel. This issue may allow a malicious user to cause a use-after-free and double-free problem, which may permit remote code execution or lead to local privilege escalation. |
| A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate. |
| A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: add missing ice_deinit_hw() in devlink reinit path
devlink-reload results in ice_init_hw failed error, and then removing
the ice driver causes a NULL pointer dereference.
[ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16
...
[ +0.000001] Call Trace:
[ +0.000003] <TASK>
[ +0.000006] ice_unload+0x8f/0x100 [ice]
[ +0.000081] ice_remove+0xba/0x300 [ice]
Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on
error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result
ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but
ice_devlink_reinit_up() still calls ice_init_hw(). Since the control
queues are not uninitialized, ice_init_hw() fails with -EBUSY.
Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with
ice_init_hw() in ice_devlink_reinit_up(). |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: provide a net pointer to __skb_flow_dissect()
After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect")
we have to provide a net pointer to __skb_flow_dissect(),
either via skb->dev, skb->sk, or a user provided pointer.
In the following case, syzbot was able to cook a bare skb.
WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053
Call Trace:
<TASK>
bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline]
__bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157
bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline]
bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline]
bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515
xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388
bpf_prog_run_xdp include/net/xdp.h:700 [inline]
bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421
bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390
bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703
__sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182
__do_sys_bpf kernel/bpf/syscall.c:6274 [inline]
__se_sys_bpf kernel/bpf/syscall.c:6272 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: send: check for inline extents in range_is_hole_in_parent()
Before accessing the disk_bytenr field of a file extent item we need
to check if we are dealing with an inline extent.
This is because for inline extents their data starts at the offset of
the disk_bytenr field. So accessing the disk_bytenr
means we are accessing inline data or in case the inline data is less
than 8 bytes we can actually cause an invalid
memory access if this inline extent item is the first item in the leaf
or access metadata from other items. |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: fix a race issue related to the operation on bpf_bound_progs list
The netdevsim driver lacks a protection mechanism for operations on the
bpf_bound_progs list. When the nsim_bpf_create_prog() performs
list_add_tail, it is possible that nsim_bpf_destroy_prog() is
simultaneously performs list_del. Concurrent operations on the list may
lead to list corruption and trigger a kernel crash as follows:
[ 417.290971] kernel BUG at lib/list_debug.c:62!
[ 417.290983] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 417.290992] CPU: 10 PID: 168 Comm: kworker/10:1 Kdump: loaded Not tainted 6.19.0-rc5 #1
[ 417.291003] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 417.291007] Workqueue: events bpf_prog_free_deferred
[ 417.291021] RIP: 0010:__list_del_entry_valid_or_report+0xa7/0xc0
[ 417.291034] Code: a8 ff 0f 0b 48 89 fe 48 89 ca 48 c7 c7 48 a1 eb ae e8 ed fb a8 ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 80 a1 eb ae e8 d9 fb a8 ff <0f> 0b 48 89 d1 48 c7 c7 d0 a1 eb ae 48 89 f2 48 89 c6 e8 c2 fb a8
[ 417.291040] RSP: 0018:ffffb16a40807df8 EFLAGS: 00010246
[ 417.291046] RAX: 000000000000006d RBX: ffff8e589866f500 RCX: 0000000000000000
[ 417.291051] RDX: 0000000000000000 RSI: ffff8e59f7b23180 RDI: ffff8e59f7b23180
[ 417.291055] RBP: ffffb16a412c9000 R08: 0000000000000000 R09: 0000000000000003
[ 417.291059] R10: ffffb16a40807c80 R11: ffffffffaf9edce8 R12: ffff8e594427ac20
[ 417.291063] R13: ffff8e59f7b44780 R14: ffff8e58800b7a05 R15: 0000000000000000
[ 417.291074] FS: 0000000000000000(0000) GS:ffff8e59f7b00000(0000) knlGS:0000000000000000
[ 417.291079] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 417.291083] CR2: 00007fc4083efe08 CR3: 00000001c3626006 CR4: 0000000000770ee0
[ 417.291088] PKRU: 55555554
[ 417.291091] Call Trace:
[ 417.291096] <TASK>
[ 417.291103] nsim_bpf_destroy_prog+0x31/0x80 [netdevsim]
[ 417.291154] __bpf_prog_offload_destroy+0x2a/0x80
[ 417.291163] bpf_prog_dev_bound_destroy+0x6f/0xb0
[ 417.291171] bpf_prog_free_deferred+0x18e/0x1a0
[ 417.291178] process_one_work+0x18a/0x3a0
[ 417.291188] worker_thread+0x27b/0x3a0
[ 417.291197] ? __pfx_worker_thread+0x10/0x10
[ 417.291207] kthread+0xe5/0x120
[ 417.291214] ? __pfx_kthread+0x10/0x10
[ 417.291221] ret_from_fork+0x31/0x50
[ 417.291230] ? __pfx_kthread+0x10/0x10
[ 417.291236] ret_from_fork_asm+0x1a/0x30
[ 417.291246] </TASK>
Add a mutex lock, to prevent simultaneous addition and deletion operations
on the list. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, test_run: Subtract size of xdp_frame from allowed metadata size
The xdp_frame structure takes up part of the XDP frame headroom,
limiting the size of the metadata. However, in bpf_test_run, we don't
take this into account, which makes it possible for userspace to supply
a metadata size that is too large (taking up the entire headroom).
If userspace supplies such a large metadata size in live packet mode,
the xdp_update_frame_from_buff() call in xdp_test_run_init_page() call
will fail, after which packet transmission proceeds with an
uninitialised frame structure, leading to the usual Bad Stuff.
The commit in the Fixes tag fixed a related bug where the second check
in xdp_update_frame_from_buff() could fail, but did not add any
additional constraints on the metadata size. Complete the fix by adding
an additional check on the metadata size. Reorder the checks slightly to
make the logic clearer and add a comment. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Fix misalignment bug in struct virtnet_info
Use the new TRAILING_OVERLAP() helper to fix a misalignment bug
along with the following warning:
drivers/net/virtio_net.c:429:46: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
This helper creates a union between a flexible-array member (FAM)
and a set of members that would otherwise follow it (in this case
`u8 rss_hash_key_data[VIRTIO_NET_RSS_MAX_KEY_SIZE];`). This
overlays the trailing members (rss_hash_key_data) onto the FAM
(hash_key_data) while keeping the FAM and the start of MEMBERS aligned.
The static_assert() ensures this alignment remains.
Notice that due to tail padding in flexible `struct
virtio_net_rss_config_trailer`, `rss_trailer.hash_key_data`
(at offset 83 in struct virtnet_info) and `rss_hash_key_data` (at
offset 84 in struct virtnet_info) are misaligned by one byte. See
below:
struct virtio_net_rss_config_trailer {
__le16 max_tx_vq; /* 0 2 */
__u8 hash_key_length; /* 2 1 */
__u8 hash_key_data[]; /* 3 0 */
/* size: 4, cachelines: 1, members: 3 */
/* padding: 1 */
/* last cacheline: 4 bytes */
};
struct virtnet_info {
...
struct virtio_net_rss_config_trailer rss_trailer; /* 80 4 */
/* XXX last struct has 1 byte of padding */
u8 rss_hash_key_data[40]; /* 84 40 */
...
/* size: 832, cachelines: 13, members: 48 */
/* sum members: 801, holes: 8, sum holes: 31 */
/* paddings: 2, sum paddings: 5 */
};
After changes, those members are correctly aligned at offset 795:
struct virtnet_info {
...
union {
struct virtio_net_rss_config_trailer rss_trailer; /* 792 4 */
struct {
unsigned char __offset_to_hash_key_data[3]; /* 792 3 */
u8 rss_hash_key_data[40]; /* 795 40 */
}; /* 792 43 */
}; /* 792 44 */
...
/* size: 840, cachelines: 14, members: 47 */
/* sum members: 801, holes: 8, sum holes: 35 */
/* padding: 4 */
/* paddings: 1, sum paddings: 4 */
/* last cacheline: 8 bytes */
};
As a result, the RSS key passed to the device is shifted by 1
byte: the last byte is cut off, and instead a (possibly
uninitialized) byte is added at the beginning.
As a last note `struct virtio_net_rss_config_hdr *rss_hdr;` is also
moved to the end, since it seems those three members should stick
around together. :) |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8m-blk-ctrl: Remove separate rst and clk mask for 8mq vpu
For i.MX8MQ platform, the ADB in the VPUMIX domain has no separate reset
and clock enable bits, but is ungated and reset together with the VPUs.
So we can't reset G1 or G2 separately, it may led to the system hang.
Remove rst_mask and clk_mask of imx8mq_vpu_blk_ctl_domain_data.
Let imx8mq_vpu_power_notifier() do really vpu reset. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs-scheme: cleanup access_pattern subdirs on scheme dir setup failure
When a DAMOS-scheme DAMON sysfs directory setup fails after setup of
access_pattern/ directory, subdirectories of access_pattern/ directory are
not cleaned up. As a result, DAMON sysfs interface is nearly broken until
the system reboots, and the memory for the unremoved directory is leaked.
Cleanup the directories under such failures. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: annotate data-race around dev->work
dev->work can re read locklessly in mISDN_read()
and mISDN_poll(). Add READ_ONCE()/WRITE_ONCE() annotations.
BUG: KCSAN: data-race in mISDN_ioctl / mISDN_read
write to 0xffff88812d848280 of 4 bytes by task 10864 on cpu 1:
misdn_add_timer drivers/isdn/mISDN/timerdev.c:175 [inline]
mISDN_ioctl+0x2fb/0x550 drivers/isdn/mISDN/timerdev.c:233
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xce/0x140 fs/ioctl.c:583
__x64_sys_ioctl+0x43/0x50 fs/ioctl.c:583
x64_sys_call+0x14b0/0x3000 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88812d848280 of 4 bytes by task 10857 on cpu 0:
mISDN_read+0x1f2/0x470 drivers/isdn/mISDN/timerdev.c:112
do_loop_readv_writev fs/read_write.c:847 [inline]
vfs_readv+0x3fb/0x690 fs/read_write.c:1020
do_readv+0xe7/0x210 fs/read_write.c:1080
__do_sys_readv fs/read_write.c:1165 [inline]
__se_sys_readv fs/read_write.c:1162 [inline]
__x64_sys_readv+0x45/0x50 fs/read_write.c:1162
x64_sys_call+0x2831/0x3000 arch/x86/include/generated/asm/syscalls_64.h:20
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
value changed: 0x00000000 -> 0x00000001 |
| In the Linux kernel, the following vulnerability has been resolved:
serial: Fix not set tty->port race condition
Revert commit bfc467db60b7 ("serial: remove redundant
tty_port_link_device()") because the tty_port_link_device() is not
redundant: the tty->port has to be confured before we call
uart_configure_port(), otherwise user-space can open console without TTY
linked to the driver.
This tty_port_link_device() was added explicitly to avoid this exact
issue in commit fb2b90014d78 ("tty: link tty and port before configuring
it as console"), so offending commit basically reverted the fix saying
it is redundant without addressing the actual race condition presented
there.
Reproducible always as tty->port warning on Qualcomm SoC with most of
devices disabled, so with very fast boot, and one serial device being
the console:
printk: legacy console [ttyMSM0] enabled
printk: legacy console [ttyMSM0] enabled
printk: legacy bootconsole [qcom_geni0] disabled
printk: legacy bootconsole [qcom_geni0] disabled
------------[ cut here ]------------
tty_init_dev: ttyMSM driver does not set tty->port. This would crash the kernel. Fix the driver!
WARNING: drivers/tty/tty_io.c:1414 at tty_init_dev.part.0+0x228/0x25c, CPU#2: systemd/1
Modules linked in: socinfo tcsrcc_eliza gcc_eliza sm3_ce fuse ipv6
CPU: 2 UID: 0 PID: 1 Comm: systemd Tainted: G S 6.19.0-rc4-next-20260108-00024-g2202f4d30aa8 #73 PREEMPT
Tainted: [S]=CPU_OUT_OF_SPEC
Hardware name: Qualcomm Technologies, Inc. Eliza (DT)
...
tty_init_dev.part.0 (drivers/tty/tty_io.c:1414 (discriminator 11)) (P)
tty_open (arch/arm64/include/asm/atomic_ll_sc.h:95 (discriminator 3) drivers/tty/tty_io.c:2073 (discriminator 3) drivers/tty/tty_io.c:2120 (discriminator 3))
chrdev_open (fs/char_dev.c:411)
do_dentry_open (fs/open.c:962)
vfs_open (fs/open.c:1094)
do_open (fs/namei.c:4634)
path_openat (fs/namei.c:4793)
do_filp_open (fs/namei.c:4820)
do_sys_openat2 (fs/open.c:1391 (discriminator 3))
...
Starting Network Name Resolution...
Apparently the flow with this small Yocto-based ramdisk user-space is:
driver (qcom_geni_serial.c): user-space:
============================ ===========
qcom_geni_serial_probe()
uart_add_one_port()
serial_core_register_port()
serial_core_add_one_port()
uart_configure_port()
register_console()
|
| open console
| ...
| tty_init_dev()
| driver->ports[idx] is NULL
|
tty_port_register_device_attr_serdev()
tty_port_link_device() <- set driver->ports[idx] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dead lock while flushing management frames
Commit [1] converted the management transmission work item into a
wiphy work. Since a wiphy work can only run under wiphy lock
protection, a race condition happens in below scenario:
1. a management frame is queued for transmission.
2. ath12k_mac_op_flush() gets called to flush pending frames associated
with the hardware (i.e, vif being NULL). Then in ath12k_mac_flush()
the process waits for the transmission done.
3. Since wiphy lock has been taken by the flush process, the transmission
work item has no chance to run, hence the dead lock.
>From user view, this dead lock results in below issue:
wlp8s0: authenticate with xxxxxx (local address=xxxxxx)
wlp8s0: send auth to xxxxxx (try 1/3)
wlp8s0: authenticate with xxxxxx (local address=xxxxxx)
wlp8s0: send auth to xxxxxx (try 1/3)
wlp8s0: authenticated
wlp8s0: associate with xxxxxx (try 1/3)
wlp8s0: aborting association with xxxxxx by local choice (Reason: 3=DEAUTH_LEAVING)
ath12k_pci 0000:08:00.0: failed to flush mgmt transmit queue, mgmt pkts pending 1
The dead lock can be avoided by invoking wiphy_work_flush() to proactively
run the queued work item. Note actually it is already present in
ath12k_mac_op_flush(), however it does not protect the case where vif
being NULL. Hence move it ahead to cover this case as well.
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00302-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1.115823.3 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: synopsys: dw-dp: fix error paths of dw_dp_bind
Fix several issues in dw_dp_bind() error handling:
1. Missing return after drm_bridge_attach() failure - the function
continued execution instead of returning an error.
2. Resource leak: drm_dp_aux_register() is not a devm function, so
drm_dp_aux_unregister() must be called on all error paths after
aux registration succeeds. This affects errors from:
- drm_bridge_attach()
- phy_init()
- devm_add_action_or_reset()
- platform_get_irq()
- devm_request_threaded_irq()
3. Bug fix: platform_get_irq() returns the IRQ number or a negative
error code, but the error path was returning ERR_PTR(ret) instead
of ERR_PTR(dp->irq).
Use a goto label for cleanup to ensure consistent error handling. |